By Topic

Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General-Sum Stochastic Games

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In real-world planning problems, we must reason not only about our own goals, but about the goals of other agents with which we may interact. Often these agents' goals are neither completely aligned with our own nor directly opposed to them. Instead there are opportunities for cooperation: by joining forces, the agents can all achieve higher utility than they could separately. But, in order to cooperate, the agents must negotiate a mutually acceptable plan from among the many possible ones, and each agent must trust that the others will follow their parts of the deal. Research in multi-agent planning has often avoided the problem of making sure that all agents have an incentive to follow a proposed joint plan. On the other hand, while game theoretic algorithms handle incentives correctly, they often don't scale to large planning problems. In this paper we attempt to bridge the gap between these two lines of research: we present an efficient game-theoretic approximate planning algorithm, along with a negotiation protocol which encourages agents to compute and agree on joint plans that are fair and optimal in a sense defined below. We demonstrate our algorithm and protocol on two simple robotic planning problems.