Fundamental Limitations of Spectral Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Spectral clustering methods are common graph-based approaches to clustering of data. Spectral clustering algorithms typically start from local information encoded in a weighted graph on the data and cluster according to the global eigenvectors of the corresponding (normalized) similarity matrix. One contribution of this paper is to present fundamental limitations of this general local to global approach. We show that based only on local information, the normalized cut functional is not a suitable measure for the quality of clustering. Further, even with a suitable similarity measure, we show that the first few eigenvectors of such adjacency matrices cannot successfully cluster datasets that contain structures at different scales of size and density. Based on these findings, a second contribution of this paper is a novel diffusion based measure to evaluate the coherence of individual clusters. Our measure can be used in conjunction with any bottom-up graph-based clustering method, it is scale-free and can determine coherent clusters at all scales. We present both synthetic examples and real image segmentation problems where various spectral clustering algorithms fail. In contrast, using this coherence measure finds the expected clusters at all scales.