By Topic

The Neurodynamics of Belief Propagation on Binary Markov Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We rigorously establish a close relationship between message passing algorithms and models of neurodynamics by showing that the equations of a continuous Hopfield network can be derived from the equations of belief propagation on a binary Markov random field. As Hopfield networks are equipped with a Lyapunov function, convergence is guaranteed. As a consequence, in the limit of many weak connections per neuron, Hopfield networks exactly implement a continuous-time variant of belief propagation starting from message initialisations that prevent from running into convergence problems. Our results lead to a better understanding of the role of message passing algorithms in real biological neural networks.