By Topic

Learning to parse images of articulated bodies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We consider the machine vision task of pose estimation from static images, specifically for the case of articulated objects. This problem is hard because of the large number of degrees of freedom to be estimated. Following a established line of research, pose estimation is framed as inference in a probabilistic model. In our experience however, the success of many approaches often lie in the power of the features. Our primary contribution is a novel casting of visual inference as an iterative parsing process, where one sequentially learns better and better features tuned to a particular image. We show quantitative results for human pose estimation on a database of over 300 images that suggest our algorithm is competitive with or surpasses the state-of-the-art. Since our procedure is quite general (it does not rely on face or skin detection), we also use it to estimate the poses of horses in the Weizmann database.