By Topic

Neurophysiological Evidence of Cooperative Mechanisms for Stereo Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Although there has been substantial progress in understanding the neurophysiological mechanisms of stereopsis, how neurons interact in a network during stereo computation remains unclear. Computational models on stereopsis suggest local competition and long-range cooperation are important for resolving ambiguity during stereo matching. To test these predictions, we simultaneously recorded from multiple neurons in V1 of awake, behaving macaques while presenting surfaces of different depths rendered in dynamic random dot stereograms. We found that the interaction between pairs of neurons was a function of similarity in receptive fields, as well as of the input stimulus. Neurons coding the same depth experienced common inhibition early in their responses for stimuli presented at their nonpreferred disparities. They experienced mutual facilitation later in their responses for stimulation at their preferred disparity. These findings are consistent with a local competition mechanism that first removes gross mismatches, and a global cooperative mechanism that further refines depth estimates.