Chained Boosting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We describe a method to learn to make sequential stopping decisions, such as those made along a processing pipeline. We envision a scenario in which a series of decisions must be made as to whether to continue to process. Further processing costs time and resources, but may add value. Our goal is to create, based on historic data, a series of decision rules (one at each stage in the pipeline) that decide, based on information gathered up to that point, whether to continue processing the part. We demonstrate how our framework encompasses problems from manufacturing to vision processing. We derive a quadratic (in the number of decisions) bound on testing performance and provide empirical results on object detection.