By Topic

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been found lacking. In this paper we propose the collapsed variational Bayesian inference algorithm for LDA, and show that it is computationally efficient, easy to implement and significantly more accurate than standard variational Bayesian inference for LDA.