By Topic

Logistic Regression for Single Trial EEG Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We propose a novel framework for the classification of single trial ElectroEncephaloGraphy (EEG), based on regularized logistic regression. Framed in this robust statistical framework no prior feature extraction or outlier removal is required. We present two variations of parameterizing the regression function: (a) with a full rank symmetric matrix coefficient and (b) as a difference of two rank=1 matrices. In the first case, the problem is convex and the logistic regression is optimal under a generative model. The latter case is shown to be related to the Common Spatial Pattern (CSP) algorithm, which is a popular technique in Brain Computer Interfacing. The regression coefficients can also be topographically mapped onto the scalp similarly to CSP projections, which allows neuro-physiological interpretation. Simulations on 162 BCI datasets demonstrate that classification accuracy and robustness compares favorably against conventional CSP based classifiers.