By Topic

Large-Scale Sparsified Manifold Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is slow on testing. Moreover, existing semi-supervised learning methods, including the LapSVM, can only handle a small number of unlabeled examples. In this paper, we integrate manifold regularization with the core vector machine, which has been used for large-scale supervised and unsupervised learning. By using a sparsified manifold regularizer and formulating as a center-constrained minimum enclosing ball problem, the proposed method produces sparse solutions with low time and space complexities. Experimental results show that it is much faster than the LapSVM, and can handle a million unlabeled examples on a standard PC; while the LapSVM can only handle several thousand patterns.