By Topic

Analysis of Representations for Domain Adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Discriminative learning methods for classification perform well when training and test data are drawn from the same distribution. In many situations, though, we have labeled training data for a source domain, and we wish to learn a classifier which performs well on a target domain with a different distribution. Under what conditions can we adapt a classifier trained on the source domain for use in the target domain? Intuitively, a good feature representation is a crucial factor in the success of domain adaptation. We formalize this intuition theoretically with a generalization bound for domain adaption. Our theory illustrates the tradeoffs inherent in designing a representation for domain adaptation and gives a new justification for a recently proposed model. It also points toward a promising new model for domain adaptation: one which explicitly minimizes the difference between the source and target domains, while at the same time maximizing the margin of the training set.