By Topic

Fast Computation of Graph Kernels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Using extensions of linear algebra concepts to Reproducing Kernel Hilbert Spaces (RKHS), we define a unifying framework for random walk kernels on graphs. Reduction to a Sylvester equation allows us to compute many of these kernels in O(n3) worst-case time. This includes kernels whose previous worst-case time complexity was O(n6), such as the geometric kernels of Gårtner et al. [1] and the marginal graph kernels of Kashima et al. [2]. Our algebra in RKHS allow us to exploit sparsity in directed and undirected graphs more effectively than previous methods, yielding sub-cubic computational complexity when combined with conjugate gradient solvers or fixed-point iterations. Experiments on graphs from bioinformatics and other application domains show that our algorithms are often more than 1000 times faster than existing approaches.