Cart (Loading....) | Create Account
Close category search window
 

Attentional Processing on a Spike-Based VLSI Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The neurons of the neocortex communicate by asynchronous events called action potentials (or ’spikes’). However, for simplicity of simulation, most models of processing by cortical neural networks have assumed that the activations of their neurons can be approximated by event rates rather than taking account of individual spikes. The obstacle to exploring the more detailed spike processing of these networks has been reduced considerably in recent years by the development of hybrid analog-digital Very-Large Scale Integrated (hVLSI) neural networks composed of spiking neurons that are able to operate in real-time. In this paper we describe such a hVLSI neural network that performs an interesting task of selective attentional processing that was previously described for a simulated ’pointer-map’ rate model by Hahnloser and colleagues. We found that most of the computational features of their rate model can be reproduced in the spiking implementation; but, that spike-based processing requires a modification of the original network architecture in order to memorize a previously attended target.

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.