Cart (Loading....) | Create Account
Close category search window
 

Graph Laplacian Regularization for Large-Scale Semidefinite Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In many areas of science and engineering, the problem arises how to discover low dimensional representations of high dimensional data. Recently, a number of researchers have converged on common solutions to this problem using methods from convex optimization. In particular, many results have been obtained by constructing semidefinite programs (SDPs) with low rank solutions. While the rank of matrix variables in SDPs cannot be directly constrained, it has been observed that low rank solutions emerge naturally by computing high variance or maximal trace solutions that respect local distance constraints. In this paper, we show how to solve very large problems of this type by a matrix factorization that leads to much smaller SDPs than those previously studied. The matrix factorization is derived by expanding the solution of the original problem in terms of the bottom eigenvectors of a graph Laplacian. The smaller SDPs obtained from this matrix factorization yield very good approximations to solutions of the original problem. Moreover, these approximations can be further refined by conjugate gradient descent. We illustrate the approach on localization in large scale sensor networks, where optimizations involving tens of thousands of nodes can be solved in just a few minutes.

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.