By Topic

Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The ill-posed nature of the MEG/EEG source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian methods are useful in this capacity because they allow these assumptions to be explicitly quantified. Recently, a number of empirical Bayesian approaches have been proposed that attempt a form of model selection by using the data to guide the search for an appropriate prior. While seemingly quite different in many respects, we apply a unifying framework based on automatic relevance determination (ARD) that elucidates various attributes of these methods and suggests directions for improvement. We also derive theoretical properties of this methodology related to convergence, local minima, and localization bias and explore connections with established algorithms.