By Topic

The Robustness-Performance Tradeoff in Markov Decision Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Computation of a satisfactory control policy for a Markov decision process when the parameters of the model are not exactly known is a problem encountered in many practical applications. The traditional robust approach is based on a worstcase analysis and may lead to an overly conservative policy. In this paper we consider the tradeoff between nominal performance and the worst case performance over all possible models. Based on parametric linear programming, we propose a method that computes the whole set of Pareto efficient policies in the performancerobustness plane when only the reward parameters are subject to uncertainty. In the more general case when the transition probabilities are also subject to error, we show that the strategy with the “optimal” tradeoff might be non-Markovian and hence is in general not tractable.