By Topic

Optimal Change-Detection and Spiking Neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Survival in a non-stationary, potentially adversarial environment requires animals to detect sensory changes rapidly yet accurately, two oft competing desiderata. Neurons subserving such detections are faced with the corresponding challenge to discern “real” changes in inputs as quickly as possible, while ignoring noisy fluctuations. Mathematically, this is an example of a change-detection problem that is actively researched in the controlled stochastic processes community. In this paper, we utilize sophisticated tools developed in that community to formalize an instantiation of the problem faced by the nervous system, and characterize the Bayes-optimal decision policy under certain assumptions. We will derive from this optimal strategy an information accumulation and decision process that remarkably resembles the dynamics of a leaky integrate-and-fire neuron. This correspondence suggests that neurons are optimized for tracking input changes, and sheds new light on the computational import of intracellular properties such as resting membrane potential, voltage-dependent conductance, and post-spike reset voltage. We also explore the influence that factors such as timing, uncertainty, neuromodulation, and reward should and do have on neuronal dynamics and sensitivity, as the optimal decision strategy depends critically on these factors.