By Topic

Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Cooperative competitive networks are believed to play a central role in cortical processing and have been shown to exhibit a wide set of useful computational properties. We propose a VLSI implementation of a spiking cooperative competitive network and show how it can perform context dependent computation both in the mean firing rate domain and in spike timing correlation space. In the mean rate case the network amplifies the activity of neurons belonging to the selected stimulus and suppresses the activity of neurons receiving weaker stimuli. In the event correlation case, the recurrent network amplifies with a higher gain the correlation between neurons which receive highly correlated inputs while leaving the mean firing rate unaltered. We describe the network architecture and present experimental data demonstrating its context dependent computation capabilities.