Kernels on Structured Objects Through Nested Histograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We propose a family of kernels for structured objects which is based on the bag-ofcomponents paradigm. However, rather than decomposing each complex object into the single histogram of its components, we use for each object a family of nested histograms, where each histogram in this hierarchy describes the object seen from an increasingly granular perspective. We use this hierarchy of histograms to define elementary kernels which can detect coarse and fine similarities between the objects. We compute through an efficient averaging trick a mixture of such specific kernels, to propose a final kernel value which weights efficiently local and global matches. We propose experimental results on an image retrieval experiment which show that this mixture is an effective template procedure to be used with kernels on histograms