By Topic

A Small World Threshold for Economic Network Formation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We introduce a game-theoretic model for network formation inspired by earlier stochastic models that mix localized and long-distance connectivity. In this model, players may purchase edges at distance d at a cost of dα, and wish to minimize the sum of their edge purchases and their average distance to other players. In this model, we show there is a striking “small world” threshold phenomenon: in two dimensions, if α < 2 then every Nash equilibrium results in a network of constant diameter (independent of network size), and if α > 2 then every Nash equilibrium results in a network whose diameter grows as a root of the network size, and thus is unbounded. We contrast our results with those of Kleinberg [8] in a stochastic model, and empirically investigate the “navigability” of equilibrium networks. Our theoretical results all generalize to higher dimensions.