A PAC-Bayes Risk Bound for General Loss Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We provide a PAC-Bayesian bound for the expected loss of convex combinations of classifiers under a wide class of loss functions (which includes the exponential loss and the logistic loss). Our numerical experiments with Adaboost indicate that the proposed upper bound, computed on the training set, behaves very similarly as the true loss estimated on the testing set.