By Topic

Approximate inference using planar graph decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A number of exact and approximate methods are available for inference calculations in graphical models. Many recent approximate methods for graphs with cycles are based on tractable algorithms for tree structured graphs. Here we base the approximation on a different tractable model, planar graphs with binary variables and pure interaction potentials (no external field). The partition function for such models can be calculated exactly using an algorithm introduced by Fisher and Kasteleyn in the 1960s. We show how such tractable planar models can be used in a decomposition to derive upper bounds on the partition function of non-planar models. The resulting algorithm also allows for the estimation of marginals. We compare our planar decomposition to the tree decomposition method of Wainwright et. al., showing that it results in a much tighter bound on the partition function, improved pairwise marginals, and comparable singleton marginals.