By Topic

No-regret Algorithms for Online Convex Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Online convex programming has recently emerged as a powerful primitive for designing machine learning algorithms. For example, OCP can be used for learning a linear classifier, dynamically rebalancing a binary search tree, finding the shortest path in a graph with unknown edge lengths, solving a structured classification problem, or finding a good strategy in an extensive-form game. Several researchers have designed no-regret algorithms for OCP. But, compared to algorithms for special cases of OCP such as learning from expert advice, these algorithms are not very numerous or flexible. In learning from expert advice, one tool which has proved particularly valuable is the correspondence between no-regret algorithms and convex potential functions: by reasoning about these potential functions, researchers have designed algorithms with a wide variety of useful guarantees such as good performance when the target hypothesis is sparse. Until now, there has been no such recipe for the more general OCP problem, and therefore no ability to tune OCP algorithms to take advantage of properties of the problem or data. In this paper we derive a new class of no-regret learning algorithms for OCP. These Lagrangian Hedging algorithms are based on a general class of potential functions, and are a direct generalization of known learning rules like weighted majority and external-regret matching. In addition to proving regret bounds, we demonstrate our algorithms learning to play one-card poker.