Learning Nonparametric Models for Probabilistic Imitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Learning by imitation represents an important mechanism for rapid acquisition of new behaviors in humans and robots. A critical requirement for learning by imitation is the ability to handle uncertainty arising from the observation process as well as the imitator's own dynamics and interactions with the environment. In this paper, we present a new probabilistic method for inferring imitative actions that takes into account both the observations of the teacher as well as the imitator's dynamics. Our key contribution is a nonparametric learning method which generalizes to systems with very different dynamics. Rather than relying on a known forward model of the dynamics, our approach learns a nonparametric forward model via exploration. Leveraging advances in approximate inference in graphical models, we show how the learned forward model can be directly used to plan an imitating sequence. We provide experimental results for two systems: a biomechanical model of the human arm and a 25-degrees-of-freedom humanoid robot. We demonstrate that the proposed method can be used to learn appropriate motor inputs to the model arm which imitates the desired movements. A second set of results demonstrates dynamically stable full-body imitation of a human teacher by the humanoid robot.