By Topic

Sparse Representation for Signal Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, application of sparse representation (factorization) of signals over an overcomplete basis (dictionary) for signal classification is discussed. Searching for the sparse representation of a signal over an overcomplete dictionary is achieved by optimizing an objective function that includes two terms: one that measures the signal reconstruction error and another that measures the sparsity. This objective function works well in applications where signals need to be reconstructed, like coding and denoising. On the other hand, discriminative methods, such as linear discriminative analysis (LDA), are better suited for classification tasks. However, discriminative methods are usually sensitive to corruption in signals due to lacking crucial properties for signal reconstruction. In this paper, we present a theoretical framework for signal classification with sparse representation. The approach combines the discrimination power of the discriminative methods with the reconstruction property and the sparsity of the sparse representation that enables one to deal with signal corruptions: noise, missing data and outliers. The proposed approach is therefore capable of robust classification with a sparse representation of signals. The theoretical results are demonstrated with signal classification tasks, showing that the proposed approach outperforms the standard discriminative methods and the standard sparse representation in the case of corrupted signals.