A Kernel Subspace Method by Stochastic Realization for Learning Nonlinear Dynamical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we present a subspace method for learning nonlinear dynamical systems based on stochastic realization, in which state vectors are chosen using kernel canonical correlation analysis, and then state-space systems are identified through regression with the state vectors. We construct the theoretical underpinning and derive a concrete algorithm for nonlinear identification. The obtained algorithm needs no iterative optimization procedure and can be implemented on the basis of fast and reliable numerical schemes. The simulation result shows that our algorithm can express dynamics with a high degree of accuracy.