Hierarchical Dirichlet Processes with Random Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Data sets involving multiple groups with shared characteristics frequently arise in practice. In this paper we extend hierarchical Dirichlet processes to model such data. Each group is assumed to be generated from a template mixture model with group level variability in both the mixing proportions and the component parameters. Variabilities in mixing proportions across groups are handled using hierarchical Dirichlet processes, also allowing for automatic determination of the number of components. In addition, each group is allowed to have its own component parameters coming from a prior described by a template mixture model. This group-level variability in the component parameters is handled using a random effects model. We present a Markov Chain Monte Carlo (MCMC) sampling algorithm to estimate model parameters and demonstrate the method by applying it to the problem of modeling spatial brain activation patterns across multiple images collected via functional magnetic resonance imaging (fMRI).