By Topic

Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The extraction of statistically independent components from high-dimensional multi-sensory input streams is assumed to be an essential component of sensory processing in the brain. Such independent component analysis (or blind source separation) could provide a less redundant representation of information about the external world. Another powerful processing strategy is to extract preferentially those components from high-dimensional input streams that are related to other information sources, such as internal predictions or proprioceptive feedback. This strategy allows the optimization of internal representation according to the information bottleneck method. However, concrete learning rules that implement these general unsupervised learning principles for spiking neurons are still missing. We show how both information bottleneck optimization and the extraction of independent components can in principle be implemented with stochastically spiking neurons with refractoriness. The new learning rule that achieves this is derived from abstract information optimization principles.