By Topic

Predicting spike times from subthreshold dynamics of a neuron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

It has been established that a neuron reproduces highly precise spike response to identical fluctuating input currents. We wish to accurately predict the firing times of a given neuron for any input current. For this purpose we adopt a model that mimics the dynamics of the membrane potential, and then take a cue from its dynamics for predicting the spike occurrence for a novel input current. It is found that the prediction is significantly improved by observing the state space of the membrane potential and its time derivative(s) in advance of a possible spike, in comparison to simply thresholding an instantaneous value of the estimated potential.