By Topic

Multiple timescales and uncertainty in motor adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Our motor system changes due to causes that span multiple timescales. For example, muscle response can change because of fatigue, a condition where the disturbance has a fast timescale or because of disease where the disturbance is much slower. Here we hypothesize that the nervous system adapts in a way that reflects the temporal properties of such potential disturbances. According to a Bayesian formulation of this idea, movement error results in a credit assignment problem: what timescale is responsible for this disturbance? The adaptation schedule influences the behavior of the optimal learner, changing estimates at different timescales as well as the uncertainty. A system that adapts in this way predicts many properties observed in saccadic gain adaptation. It well predicts the timecourses of motor adaptation in cases of partial sensory deprivation and reversals of the adaptation direction.