By Topic

Unified Inference for Variational Bayesian Linear Gaussian State-Space Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in applications ranging from acoustics to bioinformatics. The most challenging aspect of implementing the method is in performing inference on the hidden state sequence of the model. We show how to convert the inference problem so that standard Kalman Filtering/Smoothing recursions from the literature may be applied. This is in contrast to previously published approaches based on Belief Propagation. Our framework both simplifies and unifies the inference problem, so that future applications may be more easily developed. We demonstrate the elegance of the approach on Bayesian temporal ICA, with an application to finding independent dynamical processes underlying noisy EEG signals.