By Topic

Exploratory experiments to identify fake websites by using features from the network stack

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jason Koepke ; Department of Computer and Information Sciences, Towson University, MD 21252, USA ; Siddharth Kaza ; Ahmed Abbasi

Users on the web are unknowingly becoming more susceptible to scams from cyber deviants and malicious websites. There has been much work in the identification of malicious websites using application layer features based on content (HTML, images, links, etc.) and a plethora of classification techniques. However, there has been little work on using features from the other layers in the Open Systems Interconnection (OSI) network stack. Capturing features from the transport and internet layers of the network stack based on responses to various Hypertext Transfer Protocol (HTTP) requests may allow for increased classification accuracy. In this paper, we use learning techniques (Winnow, Logit Regression, Naïve Bayes, J48, and Bayesian) utilizing these new features to identify fake pharmacy websites. The results show that using transport and Internet layer features yields an accuracy of 80% to 95% for detecting fake websites using standard machine learning algorithms. The results suggest that many organizations may be hosting multiple websites using shared code and hosting services to enable them to produce the maximum number of fraudulent websites.

Published in:

Intelligence and Security Informatics (ISI), 2012 IEEE International Conference on

Date of Conference:

11-14 June 2012