By Topic

Evolving Plastic Neural Controllers stabilized by Homeostatic Mechanisms for Adaptation to a Perturbation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper introduces our ongoing work consisting of evolving bio-inspired plastic neural controllers for autonomous robots submitted to various internal and external perturbations: transmission breaking, slippage, leg loss, etc. We propose a classical neuronal model using adaptive synapses and extended with two bio-inspired homeostatic mechanisms. We perform a comparative study of the impact of the two homeostatic mechanisms on the evolvability of a neural network controlling a single-legged robot that slides on a rail and that is confronted to an external perturbation. The robot has to achieve a required speed goal given by an operator. Evolved neural controllers are tested on long-term simulations to statistically analyse their stability and adaptivity to the perturbation. Finally, we perform behavioral tests to verify our results on the robot controlled with a sinusoidal input while a perturbation occurs. Results show that homeostatic mechanisms increase evolvability, stability and adaptivity of those controllers.