By Topic

An Evolutionary Approach to Complex System Regulation Using Grammatical Evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Motivated by difficulties in engineering adaptive distributed systems, we consider a method to evolve cooperation in swarms to model dynamical systems. We present an information processing swarm model that we find to be useful in studying control methods for adaptive distributed systems. We attempt to evolve systems that form consistent patterns through the interaction of constituent agents or particles. This model considers artificial ants as walking sensors in an information-rich environment. Grammatical Evolution is combined with this swarming model as we evolve an ant's response to information. The fitness of the swarm depends on information processing by individual ants, which should lead to appropriate macroscopic spatial and/or temporal patterns. We discuss three primary issues, which are tractability, representation and fitness evaluation of dynamical systems and show how Grammatical Evolution supports a promising approach to addressing these concerns.