Competitive Co-Evolutionary Robotics: From Theory to Practice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

It is argued that competitive co-evolution is a viable methodology for developing truly autonomous and intelligent machines capable of setting their own goals in order to face new and continuously changing challenges. The paper starts giving an introduction to the dynamics of competitive co-evolutionary systems and reviews their relevance from a computational perspective. The method is then applied to two mobile robots, a predator and a prey, which quickly and autonomously develop efficient chase and evasion strategies. The results are then explained and put in a longterm framework resorting to a visualization of the Red Queen effect on the fitness landscape. Finally, comparative data on different selection criteria are used to indicate that co-evolution does not optimize “intuitive” objective criteria.