By Topic

Context-Based Bayesian Intent Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kelley, R. ; Dept. of Comput. Sci. & Eng., Univ. of Nevada, Reno, NV, USA ; Tavakkoli, A. ; King, C. ; Ambardekar, A.
more authors

One of the foundations of social interaction among humans is the ability to correctly identify interactions and infer the intentions of others. To build robots that reliably function in the human social world, we must develop models that robots can use to mimic the intent recognition skills found in humans. We propose a framework that uses contextual information in the form of object affordances and object state to improve the performance of an underlying intent recognition system. This system represents objects and their affordances using a directed graph that is automatically extracted from a large corpus of natural language text. We validate our approach on a physical robot that classifies intentions in a number of scenarios.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:4 ,  Issue: 3 )