Cart (Loading....) | Create Account
Close category search window
 

QoI-aware energy management in Internet-of-Things sensory environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhanwei Sun ; Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA ; Liu, C.H. ; Bisdikian, C. ; Branch, J.W.
more authors

Considering physical sensors with certain sensing capabilities in an Internet-of-Things (IoT) sensory environment, in this paper, we propose an efficient energy management framework to control the duty cycles of these sensors under quality-of-information (QoI) experience in a multi-task-oriented IoT sensory environment. Contrary to past research efforts, our proposal is transparent and compatible both with the underlying low-layer protocols and diverse applications, and preserving energy-efficiency in the long run without sacrificing the QoI levels attained. Specifically, we first introduce the novel concept of QoI-aware “sensor-to-task relevancy” to explicitly consider the sensing capabilities offered by an sensor to the IoT sensory environments, and QoI requirements required by a task. Second, we propose a novel concept of the “critical covering set” of any given task in selecting the sensors to service a task over time. Third, energy management decision is made dynamically at runtime, to reach the optimum for long-term application arrivals and departures under the constraint of their service delay. Finally, an extensive case study based on utilizing the sensing sensors to perform water quality monitoring is given to demonstrate the ideas and algorithms proposed in this paper, and a complete simulation is made to support all performance analysis.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2012 9th Annual IEEE Communications Society Conference on

Date of Conference:

18-21 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.