By Topic

A scalable platform for run-time reconfigurable satellite payload processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Hagemeyer, J. ; Center of Excellence Cognitive Interaction Technol., Bielefeld Univ., Bielefeld, Germany ; Hilgenstein, A. ; Jungewelter, D. ; Cozzi, D.
more authors

Reconfigurable hardware is gaining a steadily growing interest in the domain of space applications. The ability to reconfigure the information processing infrastructure at runtime together with the high computational power of today's FPGA architectures at relatively low power makes these devices interesting candidates for data processing in space applications. Partial dynamic reconfiguration of FPGAs enables maximum flexibility and can be utilized for performance increase, for improving energy efficiency, and for enhanced fault tolerance. To be able to prove the effectiveness of these novel approaches for satellite payload processing, a highly scalable prototyping environment has been developed, combining dynamically reconfigurable FPGAs with the required interfaces such as SpaceWire, MIL-STD-1553B, and SpaceFibre. Up to 30 SpaceWire interfaces, 5 copper-based SpaceFibre interfaces, and 270 GPIOs can be realized and combined with one to five dynamically reconfigurable Xilinx FPGAs and up to 20 GByte of working memory. The implemented approach for dynamic reconfiguration enables partial reconfiguration at 400 MByte/s. Blind and readback scrubbing is supported and the scrub rate can be adapted individually for different parts of the design.

Published in:

Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on

Date of Conference:

25-28 June 2012