By Topic

Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khaligh, A. ; Comput. Eng. Dept., Univ. of Maryland, College Park, MD, USA ; Dusmez, S.

The impending global energy crisis has opened up new opportunities for the automotive industry to meet the ever-increasing demand for cleaner and fuel-efficient vehicles. This has necessitated the development of drivetrains that are either fully or partially electrified in the form of electric and plug-in hybrid electric vehicles (EVs and HEVs), respectively, which are collectively addressed as plug-in EVs (PEVs). PEVs in general are equipped with larger on-board storage and power electronics for charging or discharging the battery, in comparison with HEVs. The extent to which PEVs are adopted significantly depends on the nature of the charging solution utilized. In this paper, a comprehensive topological survey of the currently available PEV charging solutions is presented. PEV chargers based on the nature of charging (conductive or inductive), stages of conversion (integrated single stage or two stages), power level (level 1, 2, or 3), and type of semiconductor devices utilized (silicon, silicon carbide, or gallium nitride) are thoroughly reviewed in this paper.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:61 ,  Issue: 8 )