By Topic

CONFAC Decomposition Approach to Blind Identification of Underdetermined Mixtures Based on Generating Function Derivatives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Almeida, A.L.F. ; Dept. of Teleinformatics Eng., Fed. Univ. of Ceara, Fortaleza, Brazil ; Luciani, X. ; Stegeman, A. ; Comon, P.

This work proposes a new tensor-based approach to solve the problem of blind identification of underdetermined mixtures of complex-valued sources exploiting the cumulant generating function (CGF) of the observations. We show that a collection of second-order derivatives of the CGF of the observations can be stored in a third-order tensor following a constrained factor (CONFAC) decomposition with known constrained structure. In order to increase the diversity, we combine three derivative types into an extended third-order CONFAC decomposition. A detailed uniqueness study of this decomposition is provided, from which easy-to-check sufficient conditions ensuring the essential uniqueness of the mixing matrix are obtained. From an algorithmic viewpoint, we develop a CONFAC-based enhanced line search (CONFAC-ELS) method to be used with an alternating least squares estimation procedure for accelerated convergence, and also analyze the numerical complexities of two CONFAC-based algorithms (namely, CONFAC-ALS and CONFAC-ELS) in comparison with the Levenberg-Marquardt (LM)-based algorithm recently derived to solve the same problem. Simulation results compare the proposed approach with some higher-order methods. Our results also corroborate the advantages of the CONFAC-based approach over the competing LM-based approach in terms of performance and computational complexity.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 11 )