By Topic

A novel Bayesian approach to adaptive mean shift segmentation of brain images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mahmood, Q. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; Chodorowski, A. ; Mehnert, A. ; Persson, M.

We present a novel adaptive mean shift (AMS) algorithm for the segmentation of tissues in magnetic resonance (MR) brain images. In particular we introduce a novel Bayesian approach for the estimation of the adaptive kernel bandwidth and investigate its impact on segmentation accuracy. We studied the three class problem where the brain tissues are segmented into white matter, gray matter and cerebrospinal fluid. The segmentation experiments were performed on both multi-modal simulated and real patient TI-weighted MR volumes with different noise characteristics and spatial inhomogeneities. The performance of the algorithm was evaluated relative to several competing methods using real and synthetic data. Our results demonstrate the efficacy of the proposed algorithm and that it can outperform competing methods, especially when the noise and spatial intensity inhomogeneities are high.

Published in:

Computer-Based Medical Systems (CBMS), 2012 25th International Symposium on

Date of Conference:

20-22 June 2012