By Topic

Energy Management Strategy of the DC Distribution System in Buildings Using the EV Service Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Byeon, G. ; School of Electrical Engineering , Korea University, Seoul, Korea ; Yoon, T. ; Oh, S. ; Jang, G.

In this paper, a new energy management strategy (EMS) for a dc distribution system in buildings is being proposed. The dc distribution system is considered as a prospective system according to the increase of dc loads and dc output type distribution energy resources (DERs) such as photovoltaic (PV) systems and fuel cells. Since the dc distribution system has many advantages such as feasible connection of DERs and electric vehicles (EVs), reduction of conversion losses between dc output sources and loads, no reactive power issues, it is very suitable for industrial and commercial buildings interfaced with DERs and EVs. The establishment of an appropriate EMS based on the economic point of view can reduce energy costs of buildings and provide benefits to participants in energy management. Applicable elements for the dc distribution system are identified and the real-time decision-making-based algorithm for minimizing operating costs is proposed in this paper. The EV service model for the EMS to offer incentive to EV owners who participate in battery discharging is described. To verify the performances of the proposed algorithm, computer simulation and economic analysis are being performed where the results show that the proposed EMS reduces energy costs, motivates EV owners, and can be applied to the dc distribution buildings.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 4 )