By Topic

Computationally Efficient Neural Feature Extraction for Spike Sorting in Implantable High-Density Recording Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kamboh, A.M. ; Dept. of Electr. Eng., Nat. Univ. of Sci. & Technol. (NUST), Islamabad, Pakistan ; Mason, A.J.

Modern microelectrode arrays acquire neural signals from hundreds of neurons in parallel that are subsequently processed for spike sorting. It is important to identify, extract, and transmit appropriate features that allow accurate spike sorting while using minimum computational resources. This paper describes a new set of spike sorting features, explicitly framed to be computationally efficient and shown to outperform principal component analysis (PCA)-based spike sorting. A hardware friendly architecture, feasible for implantation, is also presented for detecting neural spikes and extracting features to be transmitted for off chip spike classification. The proposed feature set does not require any off-chip training, and requires about 5% of computations as compared to the PCA-based features for the same classification accuracy, tested for spike trains with a broad range of signal-to-noise ratio. Our simulations show a reduction of required bandwidth to about 2% of original data rate, with an average classification accuracy of greater than 94% at a typical signal to noise ratio of 5 dB.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 1 )