By Topic

A VLSI Efficient Programmable Power-of-Two Scaler for {2^{n}-1,2^{n},2^{n}+1} RNS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jeremy Yung Shern Low ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ; Chip-Hong Chang

Variable scaling by power-of-two factor is the backbone operation of floating point arithmetic and is also commonly used in fixed-point digital signal processing (DSP) system for overflow prevention. While this operation can be readily performed in binary number system, it is extremely difficult to implement in residue number system (RNS). In the absence of an efficient solution to scale an integer directly in residue domain by a programmable power-of-two factor, improvised architecture by cascading fixed RNS scaling-by-two blocks has been previously presented. However, its area complexity and time complexity are worse than a hybrid solution leveraging on binary shifting through efficient residue-to-binary and binary-to-residue conversions. This paper presents a new algorithm for scaling in {2n - 1,2n,2n + 1} RNS by a programmable power-of-two factor. The proposed scaling algorithm breaks the inter-modulus dependency and produces a parallel architecture incurring no more than two logarithmic shifters, one-stage of carry-save adder and a modulo adder in any modulus channel. Comparing with the only available and most efficient hybrid programmable power-of-two scaler for the same moduli set, our proposed design has not only significantly reduced the critical path delay by 52.2%, 52.8%, 53.1%, and 53.2% for n = 5 , 6, 7, and 8, respectively, but also cut down the area by 14.1% on average based on CMOS 0.18 μm standard cell based implementation. In addition, our proposed design has effectively reduced the total power consumption by 43.8% and the leakage power by 20.6% on average.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:59 ,  Issue: 12 )