By Topic

Object-Oriented Bayesian Networks for Detection of Lane Change Maneuvers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Dietmar Kasper ; Group Research and Advanced Engineering, Daimler AG, Sindelfingen, 71059 Baden Wuerttemberg, Germany ; Galia Weidl ; Thao Dang ; Gabi Breuel
more authors

This article introduces a novel approach towards the recognition of typical driving maneuvers in structured highway scenarios and shows some key benefits of traffic scene modeling with object-oriented Bayesian networks (OOBNs). The approach exploits the advantages of an introduced lane-related coordinate system together with individual occupancy schedule grids for all modeled vehicles. This combination allows an efficient classification of the existing vehicle-lane and vehicle- vehicle relations in traffic scenes and thus substantially improves the understanding of complex traffic scenes. Probabilities and variances within the network are propagated systematically which results in probabilistic sets of the modeled driving maneuvers. Using this generic approach, the network is able to classify a total of 27 driving maneuvers including merging and object following.

Published in:

IEEE Intelligent Transportation Systems Magazine  (Volume:4 ,  Issue: 3 )