Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Probing-based two-hop relay with limited packet redundancy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jiajia Liu ; Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan ; Juntao Gao ; Xiaohong Jiang ; Nishiyama, H.
more authors

Due to their simplicity and efficiency, the two-hop relay algorithm and its variants serve as a class of attractive routing schemes for mobile ad hoc networks (MANETs). With the available two-hop relay schemes, a node, whenever getting an opportunity for transmission, randomly probes only once a neighbor node for the possible transmission. It is notable that such single probing strategy, although simple, may result in a significant waste of the precious transmission opportunities in highly dynamic MANETs. To alleviate such limitation for a more efficient utilization of limited wireless bandwidth, this paper explores a more general probing-based two-hop relay algorithm with limited packet redundancy. In such an algorithm with probing round limit τ and packet redundancy limit f, each transmitter node is allowed to conduct up to τ rounds of probing for identifying a possible receiver and each packet can be delivered to at most f distinct relays. A general theoretical framework is further developed to help us understand that under different setting of τ and f, how we can benefit from multiple probings in terms of the per node throughput capacity.

Published in:

High Performance Switching and Routing (HPSR), 2012 IEEE 13th International Conference on

Date of Conference:

24-27 June 2012