By Topic

Design of a shared memory Carrier Ethernet switch compliant to Provider Backbone Bridging-Traffic Engineering (IEEE802.1Qay)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saurabh Mehta ; Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, Mumbai, India 400076 ; Ashutosh Upadhyaya ; Sarvesh Bidkar ; Ashwin Gumaste

Carrier Ethernet is emerging as a new transport paradigm across metropolitan and core networks. Provider Backbone Bridging-Traffic Engineering or PBB-TE was standardized in the IEEE as 802.1Qay as a mechanism to provide a dedicated transport service at the Ethernet layer. This paper discusses implementation of the PBB-TE standard using shared memory switch architecture, though the same architecture argument can be extended to implement MPLS-TP (the other manifestation of Carrier Ethernet). While shared memory switch architectures have been well investigated, we provide to the best of our knowledge the first carrier-class aggregation switch implemented in a single Field Programmable Gate Array (FPGA). This low-cost implementation paves the way for advances in Carrier Ethernet technologies to be made available to the access part of the network using rapid prototyping and commercial off the shelf components. The switch architecture supports multiple QoS levels and implements circuit emulation to transport traditional circuit services over a packet backbone. A rigorous simulation study validates our effort.

Published in:

2012 IEEE 13th International Conference on High Performance Switching and Routing

Date of Conference:

24-27 June 2012