By Topic

Recurrent neural network using mixture of experts for time series processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tabuse, M. ; Dept. of Electr. Eng., Keio Univ., Yokohama, Japan ; Kinouchi, M. ; Hagiwara, M.

In this paper, we propose a mixture of expects (MOE) with recurrent connections for improved time series processing. The proposed network has recurrent connections from the output layer to the context layer as the Jordan network. The context layer is expanded to a number of sublayers so that the necessary information for time series processing can be held for longer time. Most of the learning algorithms for the conventional recurrent networks are based on the backpropagation algorithm so that the number of epochs required for convergence tends to increase. The MOE used in the proposed network employs a modular approach. Trained with the expectation-maximization (EM) algorithm, the MOE performs very fast convergence especially in the initial steps. The proposed network can also employ the EM algorithm so that faster convergence is expected. We have examined the ability of the proposed network by some computer simulations. It is shown that the proposed network is faster than the conventional ones in the number of epochs required for convergence

Published in:

Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on  (Volume:1 )

Date of Conference:

12-15 Oct 1997