By Topic

Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vera-Rodriguez, R. ; Biometric Recognition Group-ATVS, Univ. Autonoma de Madrid, Madrid, Spain ; Mason, J.S.D. ; Fierrez, J. ; Ortega-Garcia, J.

Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 4 )
Biometrics Compendium, IEEE