By Topic

The Task-Dependent Efficacy of Shared-Control Haptic Guidance Paradigms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dane Powell ; Rice University, Houston ; Marcia K. O'Malley

Shared-control haptic guidance is a common form of robot-mediated training used to teach novice subjects to perform dynamic tasks. Shared-control guidance is distinct from more traditional guidance controllers, such as virtual fixtures, in that it provides novices with real-time visual and haptic feedback from a real or virtual expert. Previous studies have shown varying levels of training efficacy using shared-control guidance paradigms; it is hypothesized that these mixed results are due to interactions between specific guidance implementations (“paradigms”) and tasks. This work proposes a novel guidance paradigm taxonomy intended to help classify and compare the multitude of implementations in the literature, as well as a revised proxy rendering model to allow for the implementation of more complex guidance paradigms. The efficacies of four common paradigms are compared in a controlled study with 50 healthy subjects and two dynamic tasks. The results show that guidance paradigms must be matched to a task's dynamic characteristics to elicit effective training and low workload. Based on these results, we provide suggestions for the future development of improved haptic guidance paradigms.

Published in:

IEEE Transactions on Haptics  (Volume:5 ,  Issue: 3 )