By Topic

Building Energy Management: Integrated Control of Active and Passive Heating, Cooling, Lighting, Shading, and Ventilation Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Biao Sun ; Center for Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua University, Beijing, China ; Peter B. Luh ; Qing-Shan Jia ; Ziyan Jiang
more authors

Buildings account for nearly 40% of global energy consumption. About 40% and 15% of that are consumed, respectively, by HVAC and lighting. These energy uses can be reduced by integrated control of active and passive sources of heating, cooling, lighting, shading and ventilation. However, rigorous studies of such control strategies are lacking since computationally tractable models are not available. In this paper, a novel formulation capturing key interactions of the above building functions is established to minimize the total daily energy cost. To obtain effective integrated strategies in a timely manner, a methodology that combines stochastic dynamic programming (DP) and the rollout technique is developed within the price-based coordination framework. For easy implementation, DP-derived heuristic rules are developed to coordinate shading blinds and natural ventilation, with simplified optimization strategies for HVAC and lighting systems. Numerical simulation results show that these strategies are scalable, and can effectively reduce energy costs and improve human comfort.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:10 ,  Issue: 3 )